کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5488596 | 1524101 | 2017 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Detecting ship targets in spaceborne infrared image based on modeling radiation anomalies
ترجمه فارسی عنوان
شناسایی اهداف کشتی در تصویر فضایی مادون قرمز بر اساس ناهنجاری های تابش مدل سازی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
شناسایی کشتی، تصویر فضایی مادون قرمز، ناهنجاری تابشی، مدل مخلوط گاوسی،
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک اتمی و مولکولی و اپتیک
چکیده انگلیسی
Using infrared imaging sensors to detect ship target in the ocean environment has many advantages compared to other sensor modalities, such as better thermal sensitivity and all-weather detection capability. We propose a new ship detection method by modeling radiation anomalies for spaceborne infrared image. The proposed method can be decomposed into two stages, where in the first stage, a test infrared image is densely divided into a set of image patches and the radiation anomaly of each patch is estimated by a Gaussian Mixture Model (GMM), and thereby target candidates are obtained from anomaly image patches. In the second stage, target candidates are further checked by a more discriminative criterion to obtain the final detection result. The main innovation of the proposed method is inspired by the biological mechanism that human eyes are sensitive to the unusual and anomalous patches among complex background. The experimental result on short wavelength infrared band (1.560-2.300μm) and long wavelength infrared band (10.30-12.50μm) of Landsat-8 satellite shows the proposed method achieves a desired ship detection accuracy with higher recall than other classical ship detection methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Infrared Physics & Technology - Volume 85, September 2017, Pages 141-146
Journal: Infrared Physics & Technology - Volume 85, September 2017, Pages 141-146
نویسندگان
Haibo Wang, Zhengxia Zou, Zhenwei Shi, Bo Li,