کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5488635 | 1524101 | 2017 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Dim small targets detection based on self-adaptive caliber temporal-spatial filtering
ترجمه فارسی عنوان
تشخیص اهداف کوچک بر اساس فیلترینگ زمان-فضایی کالیبر خود سازگار است
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک اتمی و مولکولی و اپتیک
چکیده انگلیسی
To boost the detect ability of dim small targets, this paper began by using improved anisotropy for background prediction (IABP), followed by target enhancement by improved high-order cumulates (HQS). Finally, on the basis of image pre-processing, to address the problem of missed and wrong detection caused by fixed caliber of traditional pipeline filtering, this paper used targets' multi-frame movement correlation in the time-space domain, combined with the scale-space theory, to propose a temporal-spatial filtering algorithm which allows the caliber to make self-adaptive changes according to the changes of the targets' scale, effectively solving the detection-related issues brought by unchanged caliber and decreased/increased size of the targets. Experiments showed that the improved anisotropic background predication could be loyal to the true background of the original image to the maximum extent, presenting a superior overall performance to other background prediction methods; the improved HQS significantly increased the signal-noise ratio of images; when the signal-noise ratio was lower than 2.6Â dB, this detection algorithm could effectively eliminate noise and detect targets. For the algorithm, the lowest signal-to-noise ratio of the detectable target is 0.37.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Infrared Physics & Technology - Volume 85, September 2017, Pages 465-477
Journal: Infrared Physics & Technology - Volume 85, September 2017, Pages 465-477
نویسندگان
Xiangsuo Fan, Zhiyong Xu, Jianlin Zhang, Yongmei Huang, Zhenming Peng,