کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5488690 | 1524105 | 2017 | 30 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Non-negative infrared patch-image model: Robust target-background separation via partial sum minimization of singular values
ترجمه فارسی عنوان
مدل پچ-مادون قرمز غیر منفی: جداسازی دقیق هدف-پس زمینه با به حداقل رساندن مقادیر جزئی مقادیر منحصر به فرد
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تصویر مادون قرمز، جداسازی هدف مدل تصحیح پچ مادون قرمز غیر منفی، به حداقل رساندن مقدار جزئی ارزش های انفرادی،
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک اتمی و مولکولی و اپتیک
چکیده انگلیسی
To further enhance the small targets and suppress the heavy clutters simultaneously, a robust non-negative infrared patch-image model via partial sum minimization of singular values is proposed. First, the intrinsic reason behind the undesirable performance of the state-of-the-art infrared patch-image (IPI) model when facing extremely complex backgrounds is analyzed. We point out that it lies in the mismatching of IPI model's implicit assumption of a large number of observations with the reality of deficient observations of strong edges. To fix this problem, instead of the nuclear norm, we adopt the partial sum of singular values to constrain the low-rank background patch-image, which could provide a more accurate background estimation and almost eliminate all the salient residuals in the decomposed target image. In addition, considering the fact that the infrared small target is always brighter than its adjacent background, we propose an additional non-negative constraint to the sparse target patch-image, which could not only wipe off more undesirable components ulteriorly but also accelerate the convergence rate. Finally, an algorithm based on inexact augmented Lagrange multiplier method is developed to solve the proposed model. A large number of experiments are conducted demonstrating that the proposed model has a significant improvement over the other nine competitive methods in terms of both clutter suppressing performance and convergence rate.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Infrared Physics & Technology - Volume 81, March 2017, Pages 182-194
Journal: Infrared Physics & Technology - Volume 81, March 2017, Pages 182-194
نویسندگان
Yimian Dai, Yiquan Wu, Yu Song, Jun Guo,