کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5494606 1527711 2016 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Exceptional quantum geometry and particle physics
ترجمه فارسی عنوان
هندسه کوانتومی استثنایی و فیزیک ذرات
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
چکیده انگلیسی
Based on an interpretation of the quark-lepton symmetry in terms of the unimodularity of the color group SU(3) and on the existence of 3 generations, we develop an argumentation suggesting that the “finite quantum space” corresponding to the exceptional real Jordan algebra of dimension 27 (the Euclidean Albert algebra) is relevant for the description of internal spaces in the theory of particles. In particular, the triality which corresponds to the 3 off-diagonal octonionic elements of the exceptional algebra is associated to the 3 generations of the Standard Model while the representation of the octonions as a complex 4-dimensional space C⊕C3 is associated to the quark-lepton symmetry (one complex for the lepton and 3 for the corresponding quark). More generally it is suggested that the replacement of the algebra of real functions on spacetime by the algebra of functions on spacetime with values in a finite-dimensional Euclidean Jordan algebra which plays the role of “the algebra of real functions” on the corresponding almost classical quantum spacetime is relevant in particle physics. This leads us to study the theory of Jordan modules and to develop the differential calculus over Jordan algebras (i.e. to introduce the appropriate notion of differential forms). We formulate the corresponding definition of connections on Jordan modules.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Physics B - Volume 912, November 2016, Pages 426-449
نویسندگان
,