کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5496041 1529836 2016 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Quantum scattering in one-dimensional systems satisfying the minimal length uncertainty relation
ترجمه فارسی عنوان
پراکندگی کوانتومی در سیستم های یک بعدی که رضایت کمترین عدم قطعیت را دارند
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک و نجوم (عمومی)
چکیده انگلیسی
In quantum gravity theories, when the scattering energy is comparable to the Planck energy the Heisenberg uncertainty principle breaks down and is replaced by the minimal length uncertainty relation. In this paper, the consequences of the minimal length uncertainty relation on one-dimensional quantum scattering are studied using an approach involving a recently proposed second-order differential equation. An exact analytical expression for the tunneling probability through a locally-periodic rectangular potential barrier system is obtained. Results show that the existence of a non-zero minimal length uncertainty tends to shift the resonant tunneling energies to the positive direction. Scattering through a locally-periodic potential composed of double-rectangular potential barriers shows that the first band of resonant tunneling energies widens for minimal length cases when the double-rectangular potential barrier is symmetric but narrows down when the double-rectangular potential barrier is asymmetric. A numerical solution which exploits the use of Wronskians is used to calculate the transmission probabilities through the Pöschl-Teller well, Gaussian barrier, and double-Gaussian barrier. Results show that the probability of passage through the Pöschl-Teller well and Gaussian barrier is smaller in the minimal length cases compared to the non-minimal length case. For the double-Gaussian barrier, the probability of passage for energies that are more positive than the resonant tunneling energy is larger in the minimal length cases compared to the non-minimal length case. The approach is exact and applicable to many types of scattering potential.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Physics - Volume 375, December 2016, Pages 444-459
نویسندگان
, ,