کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5496599 | 1399859 | 2017 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Long-ranged Fermi-Pasta-Ulam systems in thermal contact: Crossover from q-statistics to Boltzmann-Gibbs statistics
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک و نجوم (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The relaxation to equilibrium of two long-range-interacting Fermi-Pasta-Ulam-like models (β type) in thermal contact is numerically studied. These systems, with different sizes and energy densities, are coupled to each other by a few thermal contacts which are short-range harmonic springs. By using the kinetic definition of temperature, we compute the time evolution of temperature and energy density of the two systems. Eventually, for some time t>teq, the temperature and energy density of the coupled system equilibrate to values consistent with standard Boltzmann-Gibbs thermostatistics. The equilibration time teq depends on the system size N as teqâ¼Nγ where γâ1.8. We compute the velocity distribution P(v) of the oscillators of the two systems during the relaxation process. We find that P(v) is non-Gaussian and is remarkably close to a q-Gaussian distribution for all times before thermal equilibrium is reached. During the relaxation process we observe q>1 while close to t=teq the value of q converges to unity and P(v) approaches a Gaussian. Thus the relaxation phenomenon in long-ranged systems connected by a thermal contact can be generically described as a crossover from q-statistics to Boltzmann-Gibbs statistics.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physics Letters A - Volume 381, Issue 13, 4 April 2017, Pages 1123-1128
Journal: Physics Letters A - Volume 381, Issue 13, 4 April 2017, Pages 1123-1128
نویسندگان
Debarshee Bagchi, Constantino Tsallis,