کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5496667 1399862 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A conditionally exactly solvable generalization of the inverse square root potential
ترجمه فارسی عنوان
به طور کلی تعمیم دقیق پذیری معکوس پتانسیل ریشه ای معکوس
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک و نجوم (عمومی)
چکیده انگلیسی
We present a conditionally exactly solvable singular potential for the one-dimensional Schrödinger equation which involves the exactly solvable inverse square root potential. Each of the two fundamental solutions that compose the general solution of the problem is given by a linear combination with non-constant coefficients of two confluent hypergeometric functions. Discussing the bound-state wave functions vanishing both at infinity and in the origin, we derive the exact equation for the energy spectrum which is written using two Hermite functions of non-integer order. In specific auxiliary variables this equation becomes a mathematical equation that does not refer to a specific physical context discussed. In the two-dimensional space of these auxiliary variables the roots of this equation draw a countable infinite set of open curves with hyperbolic asymptotes. We present an analytic description of these curves by a transcendental algebraic equation for the involved variables. The intersections of the curves thus constructed with a certain cubic curve provide a highly accurate description of the energy spectrum.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physics Letters A - Volume 380, Issue 45, 25 November 2016, Pages 3786-3790
نویسندگان
,