کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5500081 1533724 2017 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Universal moduli spaces of Riemann surfaces
ترجمه فارسی عنوان
فضاهای مدولای جهانی سطوح ریمان
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
چکیده انگلیسی
We construct a moduli space for Riemann surfaces that is universal in the sense that it represents compact Riemann surfaces of any finite genus. This moduli space is a connected complex subspace of an infinite dimensional complex space, and is stratified according to genus such that each stratum has a compact closure, and it carries a metric and a measure that induce a Riemannian metric and a finite volume measure on each stratum. Applications to the Plateau-Douglas problem for minimal surfaces of varying genus and to the partition function of Bosonic string theory are outlined. The construction starts with a universal moduli space of Abelian varieties. This space carries a structure of an infinite dimensional locally symmetric space which is of interest in its own right. The key to our construction of the universal moduli space then is the Torelli map that assigns to every Riemann surface its Jacobian and its extension to the Satake-Baily-Borel compactifications.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Geometry and Physics - Volume 114, April 2017, Pages 124-137
نویسندگان
, ,