کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5500283 | 1533972 | 2017 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Assimilating Eulerian and Lagrangian data in traffic-flow models
ترجمه فارسی عنوان
تجمع دادههای اویلر و لاگرانژی در مدلهای جریان ترافیکی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تسریع داده ها، جریان ترافیک، مشاهدات لاگرانژی، مشاهدات اویلر،
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
چکیده انگلیسی
Data assimilation of traffic flow remains a challenging problem. One difficulty is that data come from different sources ranging from stationary sensors and camera data to GPS and cell phone data from moving cars. Sensors and cameras give information about traffic density, while GPS data provide information about the positions and velocities of individual cars. Previous methods for assimilating Lagrangian data collected from individual cars relied on specific properties of the underlying computational model or its reformulation in Lagrangian coordinates. These approaches make it hard to assimilate both Eulerian density and Lagrangian positional data simultaneously. In this paper, we propose an alternative approach that allows us to assimilate both Eulerian and Lagrangian data. We show that the proposed algorithm is accurate and works well in different traffic scenarios and regardless of whether ensemble Kalman or particle filters are used. We also show that the algorithm is capable of estimating parameters and assimilating real traffic observations and synthetic observations obtained from microscopic models.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica D: Nonlinear Phenomena - Volume 346, 1 May 2017, Pages 59-72
Journal: Physica D: Nonlinear Phenomena - Volume 346, 1 May 2017, Pages 59-72
نویسندگان
Chao Xia, Courtney Cochrane, Joseph DeGuire, Gaoyang Fan, Emma Holmes, Melissa McGuirl, Patrick Murphy, Jenna Palmer, Paul Carter, Laura Slivinski, Björn Sandstede,