کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5500300 1533971 2017 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Elementary solutions for a model Boltzmann equation in one dimension and the connection to grossly determined solutions
ترجمه فارسی عنوان
راه حل های اولیه برای یک مدل معادله بولتزمن در یک بعد و اتصال به راه حل های بسیار متمایز
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
چکیده انگلیسی
The Fourier-transformed version of the time dependent slip-flow model Boltzmann equation associated with the linearized BGK model is solved in order to determine the solution's asymptotics. The ultimate goal of this paper is to demonstrate that there exists a robust set of solutions to this model Boltzmann equation that possess a special property that was conjectured by Truesdell and Muncaster: that solutions decay to a subclass of the solution set uniquely determined by the initial mass density of the gas called the grossly determined solutions. First we determine the spectrum and eigendistributions of the associated homogeneous equation. Then, using Case's method of elementary solutions, we find analytic time-dependent solutions to the model Boltzmann equation for initial data with a specialized compact support condition under the Fourier transform. In doing so, we show that the spectrum separates the solutions into two distinct parts: one that behaves as a set of transient solutions and the other limiting to a stable subclass of solutions. Thus, we demonstrate that for gas flows with this specialized initial density condition, in time all gas flows for the one dimensional model Boltzmann equation act as grossly determined solutions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica D: Nonlinear Phenomena - Volume 347, 15 May 2017, Pages 1-11
نویسندگان
,