کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
555183 1451311 2011 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Unsupervised image segmentation evaluation and refinement using a multi-scale approach
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر سیستم های اطلاعاتی
پیش نمایش صفحه اول مقاله
Unsupervised image segmentation evaluation and refinement using a multi-scale approach
چکیده انگلیسی

In this study, a multi-scale approach is used to improve the segmentation of a high spatial resolution (30 cm) color infrared image of a residential area. First, a series of 25 image segmentations are performed in Definiens Professional 5 using different scale parameters. The optimal image segmentation is identified using an unsupervised evaluation method of segmentation quality that takes into account global intra-segment and inter-segment heterogeneity measures (weighted variance and Moran’s I, respectively). Once the optimal segmentation is determined, under-segmented and over-segmented regions in this segmentation are identified using local heterogeneity measures (variance and Local Moran’s I). The under- and over-segmented regions are refined by (1) further segmenting under-segmented regions at finer scales, and (2) merging over-segmented regions with spectrally similar neighbors. This process leads to the creation of several segmentations consisting of segments generated at three different segmentation scales. Comparison of single- and multi-scale segmentations shows that identifying and refining under- and over-segmented regions using local statistics can improve global segmentation results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISPRS Journal of Photogrammetry and Remote Sensing - Volume 66, Issue 4, July 2011, Pages 473–483
نویسندگان
, ,