کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
555188 1451311 2011 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A Boosted Genetic Fuzzy Classifier for land cover classification of remote sensing imagery
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر سیستم های اطلاعاتی
پیش نمایش صفحه اول مقاله
A Boosted Genetic Fuzzy Classifier for land cover classification of remote sensing imagery
چکیده انگلیسی

A Boosted Genetic Fuzzy Classifier (BGFC) is proposed in this paper, for land cover classification from multispectral images. The model comprises a set of fuzzy classification rules, which resemble the reasoning employed by humans. Fuzzy rules are generated in an iterative fashion, incrementally covering subspaces of the feature space, as directed by a boosting algorithm. Each rule is able to select the required features, further improving the interpretability of the obtained model. After the rule generation stage, a genetic tuning stage is employed, aiming at improving the cooperation among the fuzzy rules, thus increasing the classification performance attained after the first stage. The BGFC is tested using an IKONOS multispectral VHR image, in a lake–wetland ecosystem of international importance. For effective classification, we consider advanced feature sets, containing spectral and textural feature types. Comparative results with well-known classifiers, commonly employed in remote sensing tasks, indicate that the proposed system is able to handle multi-dimensional feature spaces more efficiently, effectively exploiting information from different feature sources.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISPRS Journal of Photogrammetry and Remote Sensing - Volume 66, Issue 4, July 2011, Pages 529–544
نویسندگان
, , ,