کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
558031 | 874839 | 2012 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Unsupervised feature selection by kernel density estimation in wavelet-based spike sorting
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Wavelet transform has been widely applied in extracting characteristic information in spike sorting. As the wavelet coefficients used to distinguish various spike shapes are often disorganized, they still lack in effective unsupervised methods still lacks to select the most discriminative features. In this paper, we propose an unsupervised feature selection method, employing kernel density estimation to select those wavelet coefficients with bimodal or multimodal distributions. This method is tested on a simulated spike data set, and the average misclassification rate after fuzzy C-means clustering has been greatly reduced, which proves this kernel density estimation-based feature selection approach is effective.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomedical Signal Processing and Control - Volume 7, Issue 2, March 2012, Pages 112–117
Journal: Biomedical Signal Processing and Control - Volume 7, Issue 2, March 2012, Pages 112–117
نویسندگان
Xinling Geng, Guangshu Hu,