کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
558371 874913 2010 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Super-human multi-talker speech recognition: A graphical modeling approach
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Super-human multi-talker speech recognition: A graphical modeling approach
چکیده انگلیسی

We present a system that can separate and recognize the simultaneous speech of two people recorded in a single channel. Applied to the monaural speech separation and recognition challenge, the system out-performed all other participants – including human listeners – with an overall recognition error rate of 21.6%, compared to the human error rate of 22.3%. The system consists of a speaker recognizer, a model-based speech separation module, and a speech recognizer. For the separation models we explored a range of speech models that incorporate different levels of constraints on temporal dynamics to help infer the source speech signals. The system achieves its best performance when the model of temporal dynamics closely captures the grammatical constraints of the task. For inference, we compare a 2-D Viterbi algorithm and two loopy belief-propagation algorithms. We show how belief-propagation reduces the complexity of temporal inference from exponential to linear in the number of sources and the size of the language model. The best belief-propagation method results in nearly the same recognition error rate as exact inference.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Speech & Language - Volume 24, Issue 1, January 2010, Pages 45–66
نویسندگان
, , , ,