کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
558402 874922 2008 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Practical use of non-local features for statistical spoken language understanding
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Practical use of non-local features for statistical spoken language understanding
چکیده انگلیسی

Spoken language understanding (SLU) addresses the problem of mapping natural language speech to frame structure encoding of its meaning. The statistical sequential labeling method has been successfully applied to SLU tasks; however, most sequential labeling approaches lack long-distance dependency information handling method. In this paper, we exploit non-local features as an estimate of long-distance dependencies to improve performance of the statistical SLU problem. A method we propose is to use trigger pairs automatically extracted by a feature induction algorithm. We describe a light practical version of the feature inducer for which a simple modification is efficient and successful. We evaluate our method on three SLU tasks and show an improvement of performance over the baseline local model.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Speech & Language - Volume 22, Issue 2, April 2008, Pages 148–170
نویسندگان
, ,