کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
558796 1451670 2014 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Automatic detection of spindles and K-complexes in sleep EEG using switching multiple models
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Automatic detection of spindles and K-complexes in sleep EEG using switching multiple models
چکیده انگلیسی


• We propose switching multiple models for automatic Stage 2 sleep EEG analysis.
• This provides a unified framework for detection of multiple transient events.
• This method is used to automatically segment EEG data and label multiple events.
• Sleep spindles and K-complexes are successfully detected and labeled.
• We extend the method to afford unsupervised learning of new models in real time.

This work investigates the use of switching linear Gaussian state space models for the segmentation and automatic labelling of Stage 2 sleep EEG data characterised by spindles and K-complexes. The advantage of this approach is that it offers a unified framework of detecting multiple transient events within background EEG data. Specifically for the identification of background EEG, spindles and K-complexes, a true positive rate (false positive rate) of 76.04% (33.47%), 83.49% (47.26%) and 52.02% (7.73%) respectively was obtained on a sample by sample basis. A novel semi-supervised model allocation approach is also proposed, allowing new unknown modes to be learnt in real time.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomedical Signal Processing and Control - Volume 10, March 2014, Pages 117–127
نویسندگان
, , ,