کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
560221 1451869 2015 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A hybrid fault diagnosis method using morphological filter–translation invariant wavelet and improved ensemble empirical mode decomposition
ترجمه فارسی عنوان
روش تشخیص خطای هیبرید با استفاده از فیلترینگ مورفولوژیک، موجک ویروسی غیرمستقیم ترجمه و تجزیه حالت تجربی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی


• A hybrid fault diagnosis method is developed to detect faults on rolling bearings.
• Morphological filter–translation invariant wavelet is used for denoising.
• EEMD is employed to extract fault characteristics.
• A new integrated method is presented to automatically select real IMFs.

Defective rolling bearing response is often characterized by the presence of periodic impulses, which are usually immersed in heavy noise. Therefore, a hybrid fault diagnosis approach is proposed. The morphological filter combining with translation invariant wavelet is taken as the pre-filter process unit to reduce the narrowband impulses and random noises in the original signal, then the purified signal will be decomposed by improved ensemble empirical mode decomposition (EEMD), in which a new selection method integrating autocorrelation analysis with the first two intrinsic mode functions (IMFs) having the maximum energies is put forward to eliminate the pseudo low-frequency components of IMFs. Applying the envelope analysis on those selected IMFs, the defect information is easily extracted. The proposed hybrid approach is evaluated by simulations and vibration signals of defective bearings with outer race fault, inner race fault, rolling element fault. Results show that the approach is feasible and effective for the fault detection of rolling bearing.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mechanical Systems and Signal Processing - Volumes 50–51, January 2015, Pages 101–115
نویسندگان
, , , , ,