کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
560875 | 875217 | 2007 | 19 صفحه PDF | دانلود رایگان |

In this paper, a vehicle/driver close-loop system is studied in order to characterise the inherent model parameters of an optimal human controller for a regulation task (e.g. stabilisation after a wind gust) in articulated vehicle motions. The tractor-semitrailer vehicle model consists of two articulated rigid bodies moving on a horizontal plane with a constant forward speed. The driver establishes his steering control through a time-delayed feedback from current vehicle states with respect to the desired motion. Identification of driver model parameters is achieved through an optimal control approach. The stability of the delayed dynamical system is also studied using a numerical method by computing the eigenvalues near the imaginary axis.
Journal: Mechanical Systems and Signal Processing - Volume 21, Issue 5, July 2007, Pages 2080–2098