کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
561082 1451940 2016 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Source localization for sparse array using nonnegative sparse Bayesian learning
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Source localization for sparse array using nonnegative sparse Bayesian learning
چکیده انگلیسی


• DOA estimation via sparse arrays is discussed in the framework of SBL.
• A nonnegative SBL algorithm involving nonnegative sparse prior is proposed.
• An EM procedure is employed to give the Bayesian inference.
• The proposed method yields superior performance in the underdetermined scenario.

The problem of source localization is addressed for sparse arrays, which have the special array geometry to increase the degree of freedom (DOF), and a nonnegative sparse signal recovery (SSR) problem is formulated for the virtual array response model of sparse arrays. A novel method is developed in the framework of nonnegative sparse Bayesian learning (NNSBL), which obviates presetting any hyperparameter, and an expectation-maximization (EM) algorithm is exploited for solving this NNSBL problem. Without a priori knowledge of the source number, the proposed method yields superior performances in the underdetermined condition illustrated by numerical simulations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 127, October 2016, Pages 37–43
نویسندگان
, , , , ,