کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
561569 | 875313 | 2011 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Tool wear monitoring by machine learning techniques and singular spectrum analysis
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper explores the use of data mining techniques for tool condition monitoring in metal cutting. Pseudo-local singular spectrum analysis (SSA) is performed on vibration signals measured on the toolholder. This is coupled to a band-pass filter to allow definition and extraction of features which are sensitive to tool wear. These features are defined, in some frequency bands, from sums of Fourier coefficients of reconstructed and residual signals obtained by SSA. This study highlights two important aspects: strong relevance of information in high frequency vibration components and benefits of the combination of SSA and band-pass filtering to get rid of useless components (noise).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mechanical Systems and Signal Processing - Volume 25, Issue 1, January 2011, Pages 400–415
Journal: Mechanical Systems and Signal Processing - Volume 25, Issue 1, January 2011, Pages 400–415
نویسندگان
Bovic Kilundu, Pierre Dehombreux, Xavier Chiementin,