کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
561819 875329 2009 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Local aggregation function learning based on support vector machines
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Local aggregation function learning based on support vector machines
چکیده انگلیسی

In content-based image retrieval (CBIR), feature aggregation is an approach to obtain image similarity by combining multiple feature distances. Most existing feature aggregation methods focus on heuristic-based or linear combination functions, which cannot sufficiently explore the interdependencies between features. Instead, a single aggregation function is always applied to all query images without considering the special features of each query image. In this paper, aggregation is formulated as a classification problem in a feature similarity space and solved by support vector machines (SVMs). The new method can learn an aggregation function for each query image and extend the linear aggregation to a nonlinear one using the kernel trick. Experiments demonstrate that the image retrieval performance of the proposed method is superior.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 89, Issue 11, November 2009, Pages 2291–2295
نویسندگان
, ,