کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
561835 | 875331 | 2007 | 7 صفحه PDF | دانلود رایگان |

In this paper, support vector machine (SVM) is described and applied in the temperature drift modeling and compensation to reduce the influence of temperature variation on the output of dynamically tuned gyroscope (DTG) and to enhance its precision. To improve the modeling capability, empirical mode decomposition (EMD) is introduced into the SVM model to eliminate any impactive noises. The real temperature drift data set from the long-term measurement system of a certain DTG is employed to validate the effectiveness of the proposed combination model. The modeling and compensation results indicate that the proposed EMD-SVM model outperforms the neural network (NN) and single SVM models, and is feasible and effective in temperature drift modeling and compensation of the DTG.
Journal: Mechanical Systems and Signal Processing - Volume 21, Issue 8, November 2007, Pages 3182–3188