کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
561988 875344 2007 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
No-reference JPEG-image quality assessment using GAP-RBF
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
No-reference JPEG-image quality assessment using GAP-RBF
چکیده انگلیسی

In this paper, we present a novel no-reference (NR) method to assess the quality of JPEG-coded images using a sequential learning algorithm for growing and pruning radial basis function (GAP-RBF) network. The features for predicting the perceived image quality are extracted by considering key human visual sensitivity factors such as edge amplitude, edge length, background activity and background luminance. Image quality estimation involves computation of functional relationship between HVS features and subjective test scores. Here, the functional relationship is approximated using GAP-RBF network. The advantage of using sequential learning algorithm is its capability to learn new samples without affecting the past learning. Further, the sequential learning algorithm requires minimal memory and computational effort. Experimental results prove that the prediction of the trained GAP-RBF network does emulate the mean opinion score (MOS). The subjective test results of the proposed metric are compared with JPEG no-reference image quality index as well as full-reference structural similarity image quality index and it is observed to outperform both.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 87, Issue 6, June 2007, Pages 1493–1503
نویسندگان
, , ,