کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
562025 875348 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On modeling of tool wear using sensor fusion and polynomial classifiers
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
On modeling of tool wear using sensor fusion and polynomial classifiers
چکیده انگلیسی

With increased global competition, the manufacturing sector is vigorously working on enhancing the efficiency of manufacturing processes in terms of cost, quality, and environmental impact. This work presents a novel approach to model and predict cutting tool wear using statistical signal analysis, pattern recognition, and sensor fusion. The data are acquired from two sources: an acoustic emission sensor (AE) and a tool post dynamometer. The pattern recognition used here is based on two methods: Artificial Neural Networks (ANN) and Polynomial Classifiers (PC). Cutting tool wear values predicted by neural network (ANN) and polynomial classifiers (PC) are compared. For the case study presented, PC proved to significantly reduce the required training time compared to that required by an ANN without compromising the prediction accuracy. The predicted results compared well with the measured tool wear values.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mechanical Systems and Signal Processing - Volume 23, Issue 5, July 2009, Pages 1719–1729
نویسندگان
, , ,