کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
562490 1451955 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Coupled hidden conditional random fields for RGB-D human action recognition
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Coupled hidden conditional random fields for RGB-D human action recognition
چکیده انگلیسی


• We propose cHCRF to learn sequence-specific and sequence-shared temporal structure.
• We contribute a novel RGB-D human action dataset containing 1200 samples.
• Experiments on 3 popular datasets show the superiority of the proposed method.

This paper proposes a human action recognition method via coupled hidden conditional random fields model by fusing both RGB and depth sequential information. The coupled hidden conditional random fields model extends the standard hidden-state conditional random fields model only with one chain-structure sequential observation to multiple chain-structure sequential observations, which are synchronized sequence data captured in multiple modalities. For model formulation, we propose the specific graph structure for the interaction among multiple modalities and design the corresponding potential functions. Then we propose the model learning and inference methods to discover the latent correlation between RGB and depth data as well as model temporal context within individual modality. The extensive experiments show that the proposed model can boost the performance of human action recognition by taking advance of complementary characteristics from both RGB and depth modalities.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 112, July 2015, Pages 74–82
نویسندگان
, , , , , ,