کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
562707 875430 2012 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Complex-valued independent vector analysis: Application to multivariate Gaussian model
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Complex-valued independent vector analysis: Application to multivariate Gaussian model
چکیده انگلیسی

We consider the problem of joint blind source separation of multiple datasets and introduce a solution to the problem for complex-valued sources. We pose the problem in an independent vector analysis (IVA) framework and provide a new general IVA implementation using Wirtinger calculus and a decoupled nonunitary optimization algorithm to facilitate Newton-based optimization. Utilizing the noncircular multivariate Gaussian distribution as a source prior enables the full utilization of the complete second-order statistics available in the covariance and pseudo-covariance matrices. The algorithm provides a principled approach for achieving multiset canonical correlation analysis.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 92, Issue 8, August 2012, Pages 1821–1831
نویسندگان
, , ,