کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
562715 875430 2012 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Use of bimodal coherence to resolve the permutation problem in convolutive BSS
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Use of bimodal coherence to resolve the permutation problem in convolutive BSS
چکیده انگلیسی

Recent studies show that facial information contained in visual speech can be helpful for the performance enhancement of audio-only blind source separation (BSS) algorithms. Such information is exploited through the statistical characterization of the coherence between the audio and visual speech using, e.g., a Gaussian mixture model (GMM). In this paper, we present three contributions. With the synchronized features, we propose an adapted expectation maximization (AEM) algorithm to model the audio–visual coherence in the off-line training process. To improve the accuracy of this coherence model, we use a frame selection scheme to discard nonstationary features. Then with the coherence maximization technique, we develop a new sorting method to solve the permutation problem in the frequency domain. We test our algorithm on a multimodal speech database composed of different combinations of vowels and consonants. The experimental results show that our proposed algorithm outperforms traditional audio-only BSS, which confirms the benefit of using visual speech to assist in separation of the audio.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 92, Issue 8, August 2012, Pages 1916–1927
نویسندگان
, , ,