کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
562815 875444 2011 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
3D human posture segmentation by spectral clustering with surface normal constraint
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
3D human posture segmentation by spectral clustering with surface normal constraint
چکیده انگلیسی

In this paper, we propose a new algorithm for partitioning human posture represented by 3D point clouds sampled from the surface of human body. The algorithm is formed as a constrained extension of the recently developed segmentation method, spectral clustering (SC). Two folds of merits are offered by the algorithm: (1) as a nonlinear method, it is able to deal with the situation that data (point cloud) are sampled from a manifold (the surface of human body) rather than the embedded entire 3D space; (2) by using constraints, it facilitates the integration of multiple similarities for human posture partitioning, and it also helps to reduce the limitations of spectral clustering. We show that the constrained spectral clustering (CSC) still can be solved by generalized eigen-decomposition. Experimental results confirm the effectiveness of the proposed algorithm.


► We introduced spectral clustering to 3D point cloud human posture segmentation.
► We integrated distance and surface normal similarities.
► We developed a constraint spectral clustering algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 91, Issue 9, September 2011, Pages 2204–2212
نویسندگان
, , , ,