کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
563182 875474 2009 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nonparallel plane proximal classifier
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Nonparallel plane proximal classifier
چکیده انگلیسی

We observed that the two costly optimization problems of twin support vector machine (TWSVM) classifier can be avoided by introducing a technique as used in proximal support vector machine (PSVM) classifier. With this modus operandi we formulate a much simpler nonparallel plane proximal classifier (NPPC) for speeding up the training of it by reducing significant computational burden over TWSVM. The formulation of NPPC for binary data classification is based on two identical mean square error (MSE) optimization problems which lead to solving two small systems of linear equations in input space. Thus it eliminates the need of any specialized software for solving the quadratic programming problems (QPPs). The formulation is also extended for nonlinear kernel classifier. Our computations show that a MATLAB implementation of NPPC can be trained with a data set of 3 million points with 10 attributes in less than 3 s. Computational results on synthetic as well as on several bench mark data sets indicate the advantages of the proposed classifier in both computational time and test accuracy. The experimental results also indicate that performances of classifiers obtained by MSE approach are sufficient in many cases than the classifiers obtained by standard SVM approach.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 89, Issue 4, April 2009, Pages 510–522
نویسندگان
, , ,