کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
563208 875477 2010 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Improving supervised learning for meeting summarization using sampling and regression
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Improving supervised learning for meeting summarization using sampling and regression
چکیده انگلیسی

Meeting summarization provides a concise and informative summary for the lengthy meetings and is an effective tool for efficient information access. In this paper, we focus on extractive summarization, where salient sentences are selected from the meeting transcripts to form a summary. We adopt a supervised learning approach for this task and use a classifier to determine whether to select a sentence in the summary based on a rich set of features. We address two important problems associated with this supervised classification approach. First we propose different sampling methods to deal with the imbalanced data problem for this task where the summary sentences are the minority class. Second, in order to account for human disagreement for summary annotation, we reframe the extractive summarization task using a regression scheme instead of binary classification. We evaluate our approaches using the ICSI meeting corpus on both the human transcripts and speech recognition output, and show performance improvement using different sampling methods and regression model.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Speech & Language - Volume 24, Issue 3, July 2010, Pages 495–514
نویسندگان
, ,