کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
563663 875517 2011 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Color image canonical correlation analysis for face feature extraction and recognition
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Color image canonical correlation analysis for face feature extraction and recognition
چکیده انگلیسی

Canonical correlation analysis (CCA) is a powerful statistical analysis technique, which can extract canonical correlated features from two data sets. However, it cannot be directly used for color images that are usually represented by three data sets, i.e., red, green and blue components. Current multi-set CCA (mCCA) methods, on the other hand, can only provide the iterative solutions, not the analytical solutions, when processing multiple data sets. In this paper, we develop the CCA technique and propose a color image CCA (CICCA) approach, which can extract canonical correlated features from three color components and provide the analytical solution. We show the mathematical model of CICCA, prove that CICCA can be cast as solving three eigen-equations, and present the realization algorithm of CICCA. Experimental results on the AR and FRGC-2 public color face image databases demonstrate that CICCA outperforms several representative color face recognition methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 91, Issue 8, August 2011, Pages 2132–2140
نویسندگان
, , , , , ,