کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
563927 1451969 2014 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Off-grid DOA estimation using array covariance matrix and block-sparse Bayesian learning
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Off-grid DOA estimation using array covariance matrix and block-sparse Bayesian learning
چکیده انگلیسی

A new method based on a novel model for off-grid direction-of-arrival (DOA) estimation is presented. The novel model is based on the sample covariance matrix and the off-grid representation of the steering vector. Based on this model, its equivalent signals are assumed to satisfy independent Gaussian distribution and its noise variance can be normalized to 1. The off-grid DOAs are estimated by the block sparse Bayesian algorithm. The advantages of the proposed method are that it considers the temporal correlation existed in each row of the equivalent signal sample matrix and the normalized noise variance does not need to be estimated. Moreover, this algorithm can work without the knowledge of the number of signals. Numerical simulations demonstrate the superior performance of the proposed method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 98, May 2014, Pages 197–201
نویسندگان
, , , ,