کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
564143 | 875570 | 2012 | 24 صفحه PDF | دانلود رایگان |

In this paper, we present two novel algorithms to improve the noise robustness of features in speech recognition: modulation spectrum replacement (MSR) and modulation spectrum filtering (MSF). The magnitude spectra of feature streams are updated by referring to the information collected in the clean training set, and the resulting new feature streams are more noise-robust to achieve higher recognition accuracy. In experiments conducted on the Aurora-2 noisy digit database, we show that the proposed MSR achieves an average relative error reduction rate of nearly 57% compared to baseline processing, and MSF is specifically effective in enhancing the features preprocessed by conventional feature normalization methods to achieve even better recognition accuracy in noise-corrupted situations.
Journal: Signal Processing - Volume 92, Issue 11, November 2012, Pages 2791–2814