کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
564322 | 875589 | 2010 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A modification of kernel discriminant analysis for high-dimensional data—with application to face recognition
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Kernel discriminant analysis (KDA) is an effective statistical method for dimensionality reduction and feature extraction. However, traditional KDA methods suffer from the small sample size problem. Moreover, they endure the Fisher criterion that is nonoptimal with respect to classification rate. This paper presents a variant of KDA that deals with both of the shortcomings in an efficient and cost effective manner. The key to the approach is to use simultaneous diagonalization technique for optimization and meanwhile utilize a modified Fisher criterion that it is more closely related to classification error. Extensive experiments on face recognition task show that the proposed method is an effective nonlinear feature extractor.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 90, Issue 8, August 2010, Pages 2423–2430
Journal: Signal Processing - Volume 90, Issue 8, August 2010, Pages 2423–2430
نویسندگان
Dake Zhou, Zhenmin Tang,