کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
564588 | 875624 | 2008 | 9 صفحه PDF | دانلود رایگان |

In this paper, Suprasegmental Hidden Markov Models (SPHMMs) have been used to enhance the recognition performance of text-dependent speaker identification in the shouted environment. Our speech database consists of two databases: our collected database and the Speech Under Simulated and Actual Stress (SUSAS) database. Our results show that SPHMMs significantly enhance speaker identification performance compared to Second-Order Circular Hidden Markov Models (CHMM2s) in the shouted environment. Using our collected database, speaker identification performance in this environment is 68% and 75% based on CHMM2s and SPHMMs, respectively. Using the SUSAS database, speaker identification performance in the same environment is 71% and 79% based on CHMM2s and SPHMMs, respectively.
Journal: Signal Processing - Volume 88, Issue 11, November 2008, Pages 2700–2708