کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
564934 875658 2007 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Variational learning for rectified factor analysis
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Variational learning for rectified factor analysis
چکیده انگلیسی

Linear factor models with non-negativity constraints have received a great deal of interest in a number of problem domains. In existing approaches, positivity has often been associated with sparsity. In this paper we argue that sparsity of the factors is not always a desirable option, but certainly a technical limitation of the currently existing solutions. We then reformulate the problem in order to relax the sparsity constraint while retaining positivity. This is achieved by employing a rectification nonlinearity rather than a positively supported prior directly on the latent space. A variational learning procedure is derived for the proposed model and this is contrasted to existing related approaches. Both i.i.d. and first-order AR variants of the proposed model are provided and they are experimentally demonstrated with artificial data. Application to the analysis of galaxy spectra show the benefits of the method in a real-world astrophysical problem, where the existing approach is not a viable alternative.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 87, Issue 3, March 2007, Pages 509–527
نویسندگان
, ,