کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
565815 875836 2007 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multi-agent decision fusion for motor fault diagnosis
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Multi-agent decision fusion for motor fault diagnosis
چکیده انگلیسی

Improvement of recognition rate is ultimate aim for fault diagnosis researchers using pattern recognition techniques. However, the unique recognition method can only recognise a limited classification capability which is insufficient for real-life application. An ongoing strategy is the decision fusion techniques. In order to avoid the shortage of single information source coupled with unique decision method, a new approach is required to obtain better results. This paper proposes a decision fusion system for fault diagnosis, which integrates data sources from different types of sensors and decisions of multiple classifiers. First, non-commensurate sensor data sets are combined using an improved sensor fusion method at a decision level by using relativity theory. The generated decision vectors are then selected based on correlation measure of classifiers in order to find an optimal sequence of classifiers fusion, which can lead to the best fusion performance. Finally, multi-agent classifiers fusion algorithm is employed as the core of the whole fault diagnosis system. The efficiency of the proposed system was demonstrated through fault diagnosis of induction motors. The experimental results show that this system can lead to super performance when compared with the best individual classifier with single-source data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mechanical Systems and Signal Processing - Volume 21, Issue 3, April 2007, Pages 1285–1299
نویسندگان
, , , ,