کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
565817 875836 2007 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fault diagnosis based on support vector machines with parameter optimisation by artificial immunisation algorithm
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Fault diagnosis based on support vector machines with parameter optimisation by artificial immunisation algorithm
چکیده انگلیسی

Support vector machines (SVM) is a new general machine-learning tool based on the structural risk minimisation principle that exhibits good generalisation when fault samples are few, it is especially fit for classification, forecasting and estimation in small-sample cases such as fault diagnosis, but some parameters in SVM are selected by man's experience, this has hampered its efficiency in practical application. Artificial immunisation algorithm (AIA) is used to optimise the parameters in SVM in this paper. The AIA is a new optimisation method based on the biologic immune principle of human being and other living beings. It can effectively avoid the premature convergence and guarantees the variety of solution. With the parameters optimised by AIA, the total capability of the SVM classifier is improved. The fault diagnosis of turbo pump rotor shows that the SVM optimised by AIA can give higher recognition accuracy than the normal SVM.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mechanical Systems and Signal Processing - Volume 21, Issue 3, April 2007, Pages 1318–1330
نویسندگان
, ,