کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
566325 1451956 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Gaussian filtering and variational approximations for Bayesian smoothing in continuous-discrete stochastic dynamic systems
ترجمه فارسی عنوان
فیلتر گاوسی و تقارن های متنوع برای صاف کردن بیزی در سیستم های دینامیکی ایستا فکری مستمر
کلمات کلیدی
صاف کردن بیزی، تقریب گاوسی، استنتاج متغیر
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی


• Comparison of Gaussian filtering based and variational Gaussian smoothers for SDEs.
• Sigma-point approximations of the variational Gaussian smoother.
• Extension of variational Gaussian smoother to singular systems.
• Variational Gaussian smoother improves results in highly nonlinear systems.

The Bayesian smoothing equations are generally intractable for systems described by nonlinear stochastic differential equations and discrete-time measurements. Gaussian approximations are a computationally efficient way to approximate the true smoothing distribution. In this work, we present a comparison between two Gaussian approximation methods. The Gaussian filtering based Gaussian smoother uses a Gaussian approximation for the filtering distribution to form an approximation for the smoothing distribution. The variational Gaussian smoother is based on minimizing the Kullback–Leibler divergence of the approximate smoothing distribution with respect to the true distribution. The results suggest that for highly nonlinear systems, the variational Gaussian smoother can be used to iteratively improve the Gaussian filtering based smoothing solution. We also present linearization and sigma-point methods to approximate the intractable Gaussian expectations in the variational Gaussian smoothing equations. In addition, we extend the variational Gaussian smoother for certain class of systems with singular diffusion matrix.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 111, June 2015, Pages 124–136
نویسندگان
, , ,