کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
566335 1451956 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bayesian sparse Fourier representation of off-grid targets with application to experimental radar data
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Bayesian sparse Fourier representation of off-grid targets with application to experimental radar data
چکیده انگلیسی

The problem considered is the estimation of a finite number of cisoids embedded in white noise, using a sparse signal representation (SSR) approach, a problem which is relevant in many radar applications. Many SSR algorithms have been developed in order to solve this problem, but they usually are sensitive to grid mismatch. In this paper, two Bayesian algorithms are presented, which are robust towards grid mismatch: a first method uses a Fourier dictionary directly parametrized by the grid mismatch while the second one employs a first-order Taylor approximation to relate linearly the grid mismatch and the sparse vector. The main strength of these algorithms lies in the use of a mixed-type distribution which decorrelates sparsity level and target power. Besides, both methods are implemented through a Monte-Carlo Markov chain algorithm. They are successfully evaluated on synthetic and experimental radar data, and compared to a benchmark algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 111, June 2015, Pages 261–273
نویسندگان
, , , ,