کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
566660 876011 2011 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adaptive sigmoidal plant identification using reduced sensitivity recursive least squares
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Adaptive sigmoidal plant identification using reduced sensitivity recursive least squares
چکیده انگلیسی

Logistic models, comprising a linear filter followed by a nonlinear memoryless sigmoidal function, are often found in practice in many fields, e.g., biology, probability modelling, risk prediction, forecasting, signal processing, electronics and communications, etc., and in many situations a real time response is needed. The online algorithms used to update the filter coefficients usually rely on gradient descent (e.g., nonlinear counterparts of the Least Mean Squares algorithm). Other algorithms, such as Recursive Least Squares, although promising improved characteristics, cannot be directly used due to the nonlinearity in the model. We propose here a modified Recursive Least Squares algorithm that provides better performance than competing state of the art methods in an adaptive sigmoidal plant identification scenario.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 91, Issue 4, April 2011, Pages 1066–1070
نویسندگان
, ,