کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5775475 | 1631742 | 2017 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Fractional and complex pseudo-splines and the construction of Parseval frames
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Pseudo-splines of integer order (m, â) were introduced by Daubechies, Han, Ron, and Shen as a family which allows interpolation between the classical B-splines and the Daubechies' scaling functions. The purpose of this paper is to generalize the pseudo-splines to fractional and complex orders (z, â) with α â Reâz ⥠1. This allows increased flexibility in regard to smoothness: instead of working with a discrete family of functions from Cm, mâN0, one uses a continuous family of functions belonging to the Hölder spaces Cαâ1. The presence of the imaginary part of z allows for direct utilization in complex transform techniques for signal and image analyses. We also show that in analogue to the integer case, the generalized pseudo-splines lead to constructions of Parseval wavelet frames via the unitary extension principle. The regularity and approximation order of this new class of generalized splines is also discussed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 314, 1 December 2017, Pages 12-24
Journal: Applied Mathematics and Computation - Volume 314, 1 December 2017, Pages 12-24
نویسندگان
Peter Massopust, Brigitte Forster, Ole Christensen,