کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5775717 1631745 2017 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
New elliptic projections and a priori error estimates of H1-Galerkin mixed finite element methods for optimal control problems governed by parabolic integro-differential equations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
New elliptic projections and a priori error estimates of H1-Galerkin mixed finite element methods for optimal control problems governed by parabolic integro-differential equations
چکیده انگلیسی
In this paper, we discuss a priori error estimates of H1-Galerkin mixed finite element methods for optimal control problems governed by parabolic integro-differential equations. The state variables and co-state variables are approximated by the lowest order Raviart-Thomas mixed finite element and linear finite element, and the control variable is approximated by piecewise constant functions. Both semidiscrete and fully discrete schemes are considered. Based on some new elliptic projections, we derive a priori error estimates for the control variable, the state variables and the adjoint state variables. The related a priori error estimates for the new projections error are also established. A numerical example is given to demonstrate the theoretical results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 311, 15 October 2017, Pages 29-46
نویسندگان
, , , ,