کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5775838 | 1631752 | 2017 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Analysis of a new finite difference/local discontinuous Galerkin method for the fractional diffusion-wave equation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
چکیده انگلیسی
In this paper a finite difference/local discontinuous Galerkin method for the fractional diffusion-wave equation is presented and analyzed. We first propose a new finite difference method to approximate the time fractional derivatives, and give a semidiscrete scheme in time. Further we develop a fully discrete scheme for the fractional diffusion-wave equation, and prove that the method is unconditionally stable and convergent with order O(hk+1+(Ît)3âα), where k is the degree of piecewise polynomial. Extensive numerical examples are carried out to confirm the theoretical convergence rates.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 304, 1 July 2017, Pages 180-189
Journal: Applied Mathematics and Computation - Volume 304, 1 July 2017, Pages 180-189
نویسندگان
Leilei Wei,