کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5775879 | 1631751 | 2017 | 5 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Hardness result for the total rainbow k-connection of graphs
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A total-coloring of a graph G is a coloring of both the edge set E(G) and the vertex set V(G) of G. A path in a total-colored graph is called total-rainbow if its edges and internal vertices have distinct colors. For a positive integer k, a total-colored graph is called total-rainbow k-connected if for every two vertices of G there are k internally disjoint total-rainbow paths in G connecting them. For an â-connected graph G and an integer k with 1 ⤠k ⤠â, the total-rainbow k-connection number of G, denoted by trck(G), is the minimum number of colors needed in a total-coloring of G to make G total-rainbow k-connected. In this paper, we study the computational complexity of total-rainbow k-connection number of graphs. We show that it is NP-complete to decide whether trck(G)=3 for any fixed positive integer k.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 305, 15 July 2017, Pages 27-31
Journal: Applied Mathematics and Computation - Volume 305, 15 July 2017, Pages 27-31
نویسندگان
Wenjing Li, Xueliang Li, Di Wu,