کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5777059 | 1632570 | 2017 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Resilience for the Littlewood-Offord Problem
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Consider the sum X(ξ)=âi=1naiξi, where a=(ai)i=1n is a sequence of non-zero reals and ξ=(ξi)i=1n is a sequence of i.i.d. Rademacher random variables (that is, Pr[ξi=1]=Pr[ξi=â1]=1/2). The classical Littlewood-Offord problem asks for the best possible upper bound on the concentration probabilities Pr[X=x]. We study a resilience version of the Littlewood-Offord problem: how many of the ξi is an adversary typically allowed to change without being able to force concentration on a particular value? We solve this problem asymptotically, demonstrating an interesting connection to the notion of an additive basis from additive combinatorics. We also present several interesting open problems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electronic Notes in Discrete Mathematics - Volume 61, August 2017, Pages 93-99
Journal: Electronic Notes in Discrete Mathematics - Volume 61, August 2017, Pages 93-99
نویسندگان
Afonso S. Bandeira, Asaf Ferber, Matthew Kwan,