کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5777100 1632570 2017 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Additive bases and flows in graphs
ترجمه فارسی عنوان
پایگاه های افزودنی و جریان در نمودار
کلمات کلیدی
هیچ جایی صفر جریان، پایگاه های افزودنی اتصال لبه،
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
چکیده انگلیسی
It was conjectured by Jaeger, Linial, Payan, and Tarsi in 1992 that for any prime number p, there is a constant c such that for any n, the union (with repetition) of the vectors of any family of c linear bases of Zpn forms an additive basis of Zpn (i.e. any element of Zpn can be expressed as the sum of a subset of these vectors). In this note, we prove this conjecture when each vector contains at most two non-zero entries. As an application, we prove several results on flows in highly edge-connected graphs, extending known results. For instance, assume that p⩾3 is a prime number and G→ is a directed, highly edge-connected graph in which each arc is given a list of two distinct values in Zp. Then G→ has a Zp-flow in which each arc is assigned a value of its own list.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electronic Notes in Discrete Mathematics - Volume 61, August 2017, Pages 399-405
نویسندگان
, , , ,