کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5777382 1632754 2017 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the partition associated to the smallest eigenvalues of the k-point fixing graph
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
On the partition associated to the smallest eigenvalues of the k-point fixing graph
چکیده انگلیسی
Let Sn be the symmetric group on [n]={1,…,n}. The k-point fixing graph F(n,k) is defined to be the graph with vertex set Sn such that two vertices g, h of F(n,k) are joined if and only if gh−1 fixes exactly k points. In this paper, we show that for sufficiently large n in terms of k the smallest eigenvalue of F(n,k) occurs at the partition (n−t0,t0) where t0 is the smallest positive integer satisfying ∑r=0t0(kr)(−1)t0−r(t0−r)!<0. It was conjectured by Ellis in Ellis (2014) that if A is an independent set in F(n,k), then |A|≤(n−k−1)! for sufficiently large n. Our result implies that |A|≤Ok((n−k−12)!) for sufficiently large n.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 63, June 2017, Pages 70-94
نویسندگان
, , ,