کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5777389 1632754 2017 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Asymptotics for the determinant of the combinatorial Laplacian on hypercubic lattices
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Asymptotics for the determinant of the combinatorial Laplacian on hypercubic lattices
چکیده انگلیسی
In this paper, we compute asymptotics for the determinant of the combinatorial Laplacian on a sequence of d-dimensional orthotope square lattices as the number of vertices in each dimension grows at the same rate. It is related to the number of spanning trees by the well-known matrix tree theorem. Asymptotics for 2 and 3 component rooted spanning forests in these graphs are also derived. Moreover, we express the number of spanning trees in a 2-dimensional square lattice in terms of the one in a 2-dimensional discrete torus and also in the quartered Aztec diamond. As a consequence, we find an asymptotic expansion of the number of spanning trees in a subgraph of Z2 with a triangular boundary.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 63, June 2017, Pages 176-196
نویسندگان
,