کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5777389 | 1632754 | 2017 | 21 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Asymptotics for the determinant of the combinatorial Laplacian on hypercubic lattices
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we compute asymptotics for the determinant of the combinatorial Laplacian on a sequence of d-dimensional orthotope square lattices as the number of vertices in each dimension grows at the same rate. It is related to the number of spanning trees by the well-known matrix tree theorem. Asymptotics for 2 and 3 component rooted spanning forests in these graphs are also derived. Moreover, we express the number of spanning trees in a 2-dimensional square lattice in terms of the one in a 2-dimensional discrete torus and also in the quartered Aztec diamond. As a consequence, we find an asymptotic expansion of the number of spanning trees in a subgraph of Z2 with a triangular boundary.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 63, June 2017, Pages 176-196
Journal: European Journal of Combinatorics - Volume 63, June 2017, Pages 176-196
نویسندگان
Justine Louis,