کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5777398 1632752 2017 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Minimal complexity of equidistributed infinite permutations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Minimal complexity of equidistributed infinite permutations
چکیده انگلیسی

An infinite permutation is a linear ordering of the set of natural numbers. An infinite permutation can be defined by a sequence of real numbers where only the order of elements is taken into account; such sequence of reals is called a representative of a permutation. In this paper we consider infinite permutations which possess an equidistributed representative on [0,1] (i.e., such that the prefix frequency of elements from each interval exists and is equal to the length of this interval), and we call such permutations equidistributed. Similarly to infinite words, a complexity p(n) of an infinite permutation is defined as a function counting the number of its subpermutations of length n. We show that, unlike for permutations in general, the minimal complexity of an equidistributed permutation α is pα(n)=n, establishing an analog of Morse and Hedlund theorem. The class of equidistributed permutations of minimal complexity coincides with the class of so-called Sturmian permutations, directly related to Sturmian words.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 65, October 2017, Pages 24-36
نویسندگان
, , ,